Developing a Uniform Monitoring Network for the Chesapeake Bay Watershed

Presentation for the National Water Monitoring Conference May 18, 2004
Chattanooga, TN

Kevin McGonigal
Water Quality Program Specialist
Susquehanna River Basin Commission

Cooperating Agencies

- **#USGS**
- **\$USEPA**
- ***** Virginia DEQ
- Maryland DNR
- **Delaware DNREC**
- West Virginia DEP
- Pennsylvania DEP
- New York State DEC
- D.C. Department of Health
- Susquehanna River Basin Commission

Problem

Chesapeake Bay impaired due to nutrients (N & P) and suspended sediment. If bay is not removed from 303d list by 2010, a TMDL will be implemented over the entire watershed.

Solution

Attain bay-wide nutrient and suspended sediment levels allowing the bay to be removed from the list of impaired waters prior to 2010.

General Approach

- Determine criteria to define a clean bay
 - Water Clarity
 - Dissolved Oxygen
 - Chlorophyll A
- Develop basin specific nutrient (N & P) and suspended sediment load caps
- Develop tributary strategies to meet load caps
- Implement tributary strategies
- Monitor and assess success

Develop a Uniform Monitoring Network

Uses for Monitoring Network

- Load calculation
 - Monthly + 8 storms
- Trend analysis
 - 5 years of monthly data
- Watershed modeling
- Monitor success of Bay restoration

Design Site Locations for Best Case Scenario Monitoring Plan

- As many sites as possible
- Spatially distributed
 - Tributary strategy basins
- Representative of geographic characteristics
 - Stream characteristics
 - Hydrologic / biological / chemical
 - Basin characteristics
 - Geology / land use
 - Sources
 - High loading areas

Establish Uniform Sampling Regime

- **Constituents**
 - TN, TP, TSS, SS
- Sample frequency
 - Monthly base flow samples
 - Storm samples
- Sample technique
 - Depth integrated
 - Horizontally integrated

Compile Characteristics of Existing Monitoring Programs

- Map existing sites
- List existing monitoring regime
 - Constituents
 - Frequency
 - Technique

Compare Existing Monitoring with Best Case Scenario

- Identify spatial data gaps
- Identify sample regime gaps
- Rank data gaps
 - Recognizing jurisdictional and watershed needs
- Reallocate existing resources where possible
 - Relocating existing sites
 - Reallocating existing funding
- Determine remaining gaps
 - New sites
 - Additional sampling
 - Additional parameters
- Allocate additional funding as available

Final Pieces

- Develop QA plan
- Develop laboratory split sampling program
- Develop MOU between agencies
- Implement monitoring plan
- Seek additional funding for gaps